代數12
1. 要簡化、有理化分數,首先分析分子或分母的數值,將這些數值設定為a-b√m 或a+b√m,要簡化這些分數就是對它們乘上共軛conjugate的分子或分母。
Mozart's SONATA for TWO PIANOS - Anderson & Roe
2. 什麼樣的數字彼此是共軛呢?a+b√m與a-b√m這二組數字彼此是共軛的。
3. 如果a-b√m 或a+b√m的a=0,那麼要乘上的因數就是√m本身,-b√m或b√m乘上√m都會去除根號√,變成整數m。
4. 對一個立方根來說,要選擇一個有理化的因數,讓立方根乘上以後變成完美立方perfect cube。
5. 【例題】有理化由一組數字組成的分母 Rationalizing Single-Term Denominators
Mozart Sonata for Two Pianos in D, K. 448; Perahia & Lupu
6. 【例題】有理化由二組數字組成的分母Rationalizing a Denominator with Two Terms
Mozart - Sonata for two pianos in D, KV 448 (1 3)
7. 【例題】有理化分子 Rationalizing a Numerator
K. 448 Mozart Sonata for Two Pianos in D major, I Allegro con spirito
n 翻譯編寫Ron Larson and David C. Falvo《Algebra and Trigonometry》
Your оωn рost provides cоnfirmed useful to me persоnallу.
回覆刪除It’s quite helρful and you are сleaгlу very knоwledgеаblе in thіs area.
You have got еxposed my peгѕonal eуe to be аble
to various views on thіs ѕpecifiс
topic wіth interesting аnd ѕound aгticles.
Check out my wеb page www.baikalglobal.com